Deep Reinforcement Learning for Sponsored Search Real-time Bidding
نویسندگان
چکیده
Bidding optimization is one of the most critical problems in online advertising. Sponsored search (SS) auction, due to the randomness of user query behavior and platform nature, usually adopts keyword-level bidding strategies. In contrast, the display advertising (DA), as a relatively simpler scenario for auction, has taken advantage of real-time bidding (RTB) to boost the performance for advertisers. In this paper, we consider the RTB problem in sponsored search auction, named SS-RTB. SS-RTB has a much more complex dynamic environment, due to stochastic user query behavior and more complex bidding policies based on multiple keywords of an ad. Most previous methods for DA cannot be applied. We propose a reinforcement learning (RL) solution for handling the complex dynamic environment. Although some RL methods have been proposed for online advertising, they all fail to address the “environment changing” problem: the state transition probabilities vary between two days. Motivated by the observation that auction sequences of two days share similar transition patterns at a proper aggregation level, we formulate a robust MDP model at hour-aggregation level of the auction data and propose a controlby-model framework for SS-RTB. Rather than generating bid prices directly, we decide a bidding model for impressions of each hour and perform real-time bidding accordingly.We also extend themethod to handle the multi-agent problem. We deployed the SS-RTB system in the e-commerce search auction platform of Alibaba. Empirical experiments of offline evaluation and onlineA/B test demonstrate the effectiveness of our method.
منابع مشابه
Reinforcement Mechanism Design, with Applications to Dynamic Pricing in Sponsored Search Auctions
In this study, we apply reinforcement learning techniques and propose what we call reinforcement mechanism design to tackle the dynamic pricing problem in sponsored search auctions. In contrast to previous game-theoretical approaches that heavily rely on rationality and common knowledge among the bidders, we take a data-driven approach, and try to learn, over repeated interactions, the set of o...
متن کاملBudget Constrained Bidding by Model-free Reinforcement Learning in Display Advertising
Real-time bidding (RTB) is almost the most important mechanism in online display advertising, where proper bid for each page view plays a vital and essential role for good marketing results. Budget constrained bidding is a typical scenario in RTB mechanism where the advertisers hope to maximize total value of winning impressions under a pre-set budget constraint. However, the optimal strategy i...
متن کاملLADDER: A Human-Level Bidding Agent for Large-Scale Real-Time Online Auctions
We present LADDER, the first deep reinforcement learning agent that can successfully learn control policies for largescale real-world problems directly from raw inputs composed of high-level semantic information. The agent is based on an asynchronous stochastic variant of DQN (Deep Q Network) named DASQN. The inputs of the agent are plain-text descriptions of states of a game of incomplete info...
متن کاملOptimizing Sponsored Search Ranking Strategy by Deep Reinforcement Learning
Sponsored search is an indispensable business model and a major revenue contributor of almost all the search engines. From the advertisers’ side, participating in ranking the search results by paying for the sponsored search advertisement to aract more awareness and purchase facilitates their commercial goal. From the users’ side, presenting personalized advertisement reecting their propensit...
متن کاملReal-Time Bidding with Multi-Agent Reinforcement Learning in Display Advertising
Real-time advertising allows advertisers to bid for each impression for a visiting user. To optimize a specic goal such as maximizing the revenue led by ad placements, advertisers not only need to estimate the relevance between the ads and user’s interests, but most importantly require a strategic response with respect to other advertisers bidding in the market. In this paper, we formulate bid...
متن کامل